Sheet No. (9)

1- Evaluate

\[I = \int_{0}^{\infty} \int_{y}^{\infty} e^{-x^2} \, dx \, dy \]

2- Evaluate

\[I = \int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} \, dy \, dx \]

3- Find the area of the cardioid \(r=a(1+\cos \theta) \)

4- Find the area between \(y=x^2 \) and \(y=x+1 \)

5- Find the volume cut off from the paraboloid \(x^2 + \frac{y^2}{4} + z = 1 \) by the plane \(z=0 \)

6- Evaluate \(\iint \sqrt{1-x^2-y^2} \, dx \, dy \) on the unit circle whose Centre at the origin

7- Evaluate \(\iint \sqrt{1-x^2-a^2-y^2} \, dx \, dy \) on the region \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

8- Evaluate the integral \(\int_{0}^{\infty} e^{-x^2} \, dx \)

9- Evaluate the integral \(\iiint_A x^2 \, dx \, dy \, dz \) over the volume of the ellipsoid \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \)

10- The geometric model of a material body is a plane region \(R \) bound by \(y=x^2 \) and \(y=\sqrt{2-x^2} \) in the interval \([0,1]\) and with a density function \(r=xy \) (a) Draw the graph of the region. (b) Find the mass of the body. (c) Find the coordinates of the center of mass.