1. A baseball is thrown downward from a 50-ft tower with an initial speed of 18 ft/s. Determine the speed at which it hits the ground and the time of travel.

2. When a train is traveling along a straight track at 2 m/s, it begins to accelerate at \(a = 160 v^2 \) m/s\(^2\) where \(v \) is in m/s. Determine its velocity \(v \) and the position 3 s after the acceleration.

3. Traveling with an initial speed of 70 km/h, a car accelerates at along a straight road at 6000 km/h\(^2\). How long will it take to reach a speed of 120 km/h. Also, through what distance does the car travel during this time?

4. A bus starts from rest with a constant acceleration of 1 m/s\(^2\). Determine the time required for it to attain a speed of 25 m/s and the distance traveled.

5. A bicyclist starts from rest and after traveling along a straight path, a distance of 20 m reaches a speed of 30 km/h. Determine his acceleration if it is constant. Also, how long does it take to reach the speed of 30 km/h?

6. A particle moves along a straight line with an acceleration of \(a = (3S^{1/3} + S^{5/2}) \) m/s\(^2\), where \(S \) is in meters. Determine the particle's velocity when \(S = 2 \) m, if it starts from rest when \(S = 1 \) m.

7. Determine the time required for a car to travel 1 km along a road if the car starts from rest, reaches a maximum speed at some intermediate point, and then stops at the end of the road. The car can accelerate at 1.5 m/s\(^2\) and decelerate at 2 m/s\(^2\).

8. A train starts from rest at station A and accelerates at 0.5 m/s\(^2\) for 60s. Afterwards it travels with a constant velocity for 15 min. It then decelerates at 1 m/s\(^2\) until it is brought to rest at station B. Determine the distance between the stations.
(9) The velocity of a car is plotted as shown. Determine the total distance the car moves until it stops. Construct the $a-t$ graph.

(10) The $v-s$ graph for a go-cart traveling on a straight road is shown. Determine the acceleration of the go-cart at $S = 50\ m$ and $S = 150\ m$. Draw the $a-s$ graph.

(11) The $a-t$ graph of the bullet train is shown. If the train starts from rest, determine the elapsed time (t') before it again comes to rest. What is the total distance traveled during this time interval? Construct the $v-t$ and $s-t$ graphs.

(12) A race car starting from rest travels along a straight road and for 10 seconds has the acceleration shown. Construct the $v-t$ graph that describes the motion and find the distance traveled in 10 seconds.

(13) An airplane lands on the straight runway, originally traveling at 110 ft/s when $S=0$. If it is subjected to the decelerations shown, determine the time (t') needed to stop the plane and construct the $s-t$ graph for the motion.